Estimation of Scale Parameter Under a Bounded Loss Function
نویسنده
چکیده مقاله:
The quadratic loss function has been used by decision-theoretic statisticians and economists for many years. In this paper the estimation of scale parameter under a bounded loss function, which is adequate for assessing quality and quality improvement, is considered with restriction to the principles of invariance and risk unbiasedness. An implicit form of minimum risk scale equivariant estimator and Bayes estimators are obtained. Fisher’s problem of the Nile as an example is included.
منابع مشابه
ESTIMATION OF SCALE PARAMETER UNDER A REFLECTED GAMMA LOSS FUNCTION
In this paper, the estimation of a scale parameter t under a new and bounded loss function, based on a reflection of the gamma density function, is discussed. The best scale-invariant estimator of tis obtained and the admissibility of all linear functions of the sufficient statistic, for estimating t in the absence of a nuisance parameter, is investigated
متن کاملEstimation of Lower Bounded Scale Parameter of Rescaled F-distribution under Entropy Loss Function
We consider the problem of estimating the scale parameter &beta of a rescaled F-distribution when &beta has a lower bounded constraint of the form &beta&gea, under the entropy loss function. An admissible minimax estimator of the scale parameter &beta, which is the pointwise limit of a sequence of Bayes estimators, is given. Also in the class of truncated linear estimators, the admissible estim...
متن کاملEstimation of Scale Parameter in a Subfamily of Exponential Family with Weighted Balanced Loss Function
Suppose x1,x2, x3, ..., xn is a random sample of size n from a distribution with pdf...[To continue please click here]
متن کاملMinimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....
متن کاملEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملAn Admissible Estimator of a Lower-bounded Scale Parameter under Squared-log Error Loss Function
Estimation in truncated parameter space is one of the most important features in statistical inference, because the frequently used criterion of unbiasedness is useless, since no unbiased estimator exists in general. So, other optimally criteria such as admissibility and minimaxity have to be looked for among others. In this paper we consider a subclass of the exponential families of distributi...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 27 شماره 2
صفحات 169- 173
تاریخ انتشار 2016-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023